- Home
- Mechanical power
- Self-powered directional rotation around a covalent single bond

Self-powered directional rotation around a covalent single bond
Schliwa, M. & Woehlke, G. Molecular motors. Nature 422759–765 (2003).
Google Scholar
Boyer, PD Energy, Life and ATP (Nobel Lecture). Angelw. Chem. Int. Ed. 372296–2307 (1998).
Google Scholar
Santiveri, M. et al. Structure and function of the stator units of the bacterial flagellar motor. Cell 183244-257 (2020).
Google Scholar
Kelly, TR, Tellitu, I. & Sestelo, JP In search of molecular ratchets. Angelw. Chem. Int. Ed. English 361866–1868 (1997).
Kelly, TR, De Silva, H. & Silva, RA Unidirectional rotary motion in a molecular system. Nature 401150-152 (1999).
Google Scholar
Mock, WL & Ochwat, KJ Theory and example of a small molecule motor. J.Phys. Org. Chem. 16175-182 (2003).
Fletcher, SP, Dumur, F., Pollard, MM & Feringa, BL A reversible unidirectional molecular rotary motor driven by chemical energy. Science 31080–82 (2005).
Google Scholar
Dahl, BJ & Branchaud, BP Unidirectional 180° linkage rotation in a prototype biaryl lactone artificial molecular motor. Org. Lett. 85841–5844 (2006).
Google Scholar
Wilson, MR et al. A self-contained chemically fueled small molecule engine. Nature 534235-240 (2016).
Google Scholar
Collins, BSL, Kistemaker, JCM, Otten, E. & Feringa, BL A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nat. Chem. 8860–866 (2016).
Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of chemical fuel. Science 358340–343 (2017).
Google Scholar
Zhang, Y. et al. A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality. Chemistry 62420–2429 (2020).
Koumura, N., Zijlstra, RWJ, van Delden, RA, Harada, N. & Feringa, BL Light-driven monodirectional molecular rotor. Nature 401152-155 (1999).
Google Scholar
Pooler, DRS, Lubbe, AS, Crespi, S. & Feringa, BL Design of light-driven rotating molecular motors. Chem. Science. 1214964–14986 (2021).
Google Scholar
Kelly, TR et al. Progress towards a rationally designed, chemically fueled rotary molecular motor. Jam. Chem. Soc. 129376–386 (2007).
Google Scholar
Feynman, RP, Leighton, RB & Sands, M. The Feynman Lectures on Physics Flight. 1, ch. 46 (Addison-Wesley Publishing Company, 1963).
Davis, AP Tilt at windmills? The second law survives. Angelw. Chem. Int. Ed. 37909-910 (1998).
Fogassy, K. et al. Efficient synthesis and resolution of (±)-1-[2-carboxy-6-(trifluoromethyl)phenyl]pyrrole-2-carboxylic acid. Tetrahedron asymmetry 114771–4780 (2000).
Faigl, F., Tárkányi, G., Fogassy, K., Tepfenhardt, D. & Thurner, A. Synthesis and stereochemical stability of novel atropisomeric derivatives of 1-(substituted phenyl)pyrrole. Tetrahedron 641371-1377 (2008).
Amano, S., Fielden, SDP, and Leigh, DA A catalytically driven artificial molecular pump. Nature 594529-534 (2021).
Google Scholar
Borsley, S., Leigh, DA, and Roberts, BMW A kinetic dual-trigger information ratchet autonomously driven by carbodiimide hydration. Jam. Chem. Soc. 1434414–4420 (2021).
Google Scholar
Ragazzon, G. & Prins, LJ Energy consumption in chemical fuel self-assembly. Nat. Nanotechnology. 13882–889 (2018).
Google Scholar
Kariyawasam, LS, Hossain, MM & Hartley, CS Transient covalent bonding in non-equilibrium abiotic systems. Angelw. Chem. Int. Ed. 6012648–12658 (2021).
Amano, S., Borsley, S., Leigh, DA, and Sun, Z. Chemical engines: moving systems away from equilibrium through catalytic reaction cycles. Nat. Nanotechnology. 161057-1067 (2021).
Google Scholar
Tena-Solsona, M. et al. Out-of-equilibrium dissipative supramolecular materials with adjustable lifetime. Nat. Common. 815895 (2017).
Google Scholar
Kariyawasam, LS & Hartley, CS Dissipative assembly of aqueous carboxylic acid anhydrides powered by carbodiimides. Jam. Chem. Soc. 13911949–11955 (2017).
Google Scholar
Bal, S., Das, K., Ahmed, S. & Das, D. Chemically powered dissipative self-assembly that exploits cooperative catalysis. Angelw. Chem. Int. Ed. 58244–247 (2019).
Astumian, RD Irrelevance of motor stroke for directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J 108291-303 (2015).
Google Scholar
Erbas-Cakmak, S., Leigh, DA, McTernan, CT & Nussbaumer, AL Artificial Molecular Machines. Chem. Tower. 11510081-10206 (2015).
Google Scholar
Astumian, RD, Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChimPhysChem 171719-1741 (2016).
Google Scholar
Dálaigh, C. Ó. & Connon, SJ Non-enzymatic acylative kinetic resolution of Baylis-Hillman adducts. J.Org. Chem. 727066–7069 (2007).
Google Scholar
Li, Q et al. Macroscopic contraction of a gel induced by the integrated movement of molecular motors driven by light. Nat. Nanotechnology. ten161-165 (2015).
Google Scholar
García-López, V. et al. Molecular machines open cell membranes. Nature 548567-572 (2017).
Google Scholar
Feng, L. et al. Active mechanosorption driven by pumping cassettes. Science 3741215-1221 (2021).
Google Scholar
Thomas, D., et al. Pumping between phases with a pulsed fuel molecular ratchet. Preprint at https://doi.org/10.33774/chemrxiv-2021-fl7tv (2021).
Zhang, Q et al. Artificial muscle-like molecular actuators for nanoparticles. Chemistry 42670–2684 (2018).
Astumian, RD & Bier, M. Mechanochemical coupling of molecular motor movement to ATP hydrolysis. Biophys. J 70637–653 (1996).
Google Scholar
Astumien, RD Thermodynamics and kinetics of a Brownian motor. Science 276917–922 (1997).
Google Scholar
Serreli, V., Lee, C.-F., Kay, ER, and Leigh, DA A ratchet of molecular information. Nature 445523-527 (2007).
Google Scholar
Alvarez-Pérez, M., Goldup, SM, Leigh, DA, and Slawin, AMZ A chemically-driven molecular information ratchet. Jam. Chem. Soc. 1301836–1838 (2008).
Google Scholar
Astumian, RD Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Common. ten3837 (2019).
Google Scholar
Jayalath, IM, Wang, H., Mantel, G., Kariyawasam, LS & Hartley, CS Chemically fueled transient geometry changes in diphenic acids. Org. Lett. 227567–7571 (2020).
Google Scholar
Jayalath, IM, Gerken, MM, Mantel, G. & Hartley, CS Effects of substituents on carbodiimide-induced transient geometry changes in diphenic acids. J.Org. Chem. 8612024–12033 (2021).
Google Scholar
Amano, S. et al. Insights from a thermodynamic information analysis of a synthetic molecular motor. Nat. Chemistry. (2022) https://doi.org/10.1038/s41557-022-00899-z.
Ma, B. & Nussinov, R. Enzyme dynamics indicate stepwise conformational selection in catalysis. Running. Opinion. Chem. Biol. 14652–659 (2010).
Google Scholar
Kamerlin, SC & Warshel, A. At the dawn of the 21st century: is dynamics the missing link in understanding enzymatic catalysis? Proteins 781339-1375 (2010).
Google Scholar
Krajnik, B. et al. Defocused imaging of surface-bound molecular motors driven by UV. Jam. Chem. Soc. 1397156–7159 (2017).
Google Scholar
Roke, D., Wezenberg, SJ & Feringa, BL Molecular rotary motors: unidirectional movement around double bonds. proc. Natl. Acad. Science. United States 1159423–9431 (2018).
Google Scholar