May 13, 2022
  • May 13, 2022

Self-powered directional rotation around a covalent single bond

By on April 6, 2022 0
  • Schliwa, M. & Woehlke, G. Molecular motors. Nature 422759–765 (2003).

    ADS
    CASE
    PubMed

    Google Scholar

  • Boyer, PD Energy, Life and ATP (Nobel Lecture). Angelw. Chem. Int. Ed. 372296–2307 (1998).

    Google Scholar

  • Santiveri, M. et al. Structure and function of the stator units of the bacterial flagellar motor. Cell 183244-257 (2020).

    CASE
    PubMed

    Google Scholar

  • Kelly, TR, Tellitu, I. & Sestelo, JP In search of molecular ratchets. Angelw. Chem. Int. Ed. English 361866–1868 (1997).

    CASE

    Google Scholar

  • Kelly, TR, De Silva, H. & Silva, RA Unidirectional rotary motion in a molecular system. Nature 401150-152 (1999).

    ADS
    CASE
    PubMed

    Google Scholar

  • Mock, WL & Ochwat, KJ Theory and example of a small molecule motor. J.Phys. Org. Chem. 16175-182 (2003).

    CASE

    Google Scholar

  • Fletcher, SP, Dumur, F., Pollard, MM & Feringa, BL A reversible unidirectional molecular rotary motor driven by chemical energy. Science 31080–82 (2005).

    ADS
    CASE
    PubMed

    Google Scholar

  • Dahl, BJ & Branchaud, BP Unidirectional 180° linkage rotation in a prototype biaryl lactone artificial molecular motor. Org. Lett. 85841–5844 (2006).

    CASE
    PubMed

    Google Scholar

  • Wilson, MR et al. A self-contained chemically fueled small molecule engine. Nature 534235-240 (2016).

    ADS
    CASE
    PubMed

    Google Scholar

  • Collins, BSL, Kistemaker, JCM, Otten, E. & Feringa, BL A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nat. Chem. 8860–866 (2016).

    CASE

    Google Scholar

  • Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of chemical fuel. Science 358340–343 (2017).

    ADS
    CASE
    PubMed

    Google Scholar

  • Zhang, Y. et al. A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality. Chemistry 62420–2429 (2020).

    CASE

    Google Scholar

  • Koumura, N., Zijlstra, RWJ, van Delden, RA, Harada, N. & Feringa, BL Light-driven monodirectional molecular rotor. Nature 401152-155 (1999).

    ADS
    CASE
    PubMed

    Google Scholar

  • Pooler, DRS, Lubbe, AS, Crespi, S. & Feringa, BL Design of light-driven rotating molecular motors. Chem. Science. 1214964–14986 (2021).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Kelly, TR et al. Progress towards a rationally designed, chemically fueled rotary molecular motor. Jam. Chem. Soc. 129376–386 (2007).

    CASE
    PubMed

    Google Scholar

  • Feynman, RP, Leighton, RB & Sands, M. The Feynman Lectures on Physics Flight. 1, ch. 46 (Addison-Wesley Publishing Company, 1963).

  • Davis, AP Tilt at windmills? The second law survives. Angelw. Chem. Int. Ed. 37909-910 (1998).

    ADS
    CASE

    Google Scholar

  • Fogassy, ​​K. et al. Efficient synthesis and resolution of (±)-1-[2-carboxy-6-(trifluoromethyl)phenyl]pyrrole-2-carboxylic acid. Tetrahedron asymmetry 114771–4780 (2000).

    CASE

    Google Scholar

  • Faigl, F., Tárkányi, G., Fogassy, ​​K., Tepfenhardt, D. & Thurner, A. Synthesis and stereochemical stability of novel atropisomeric derivatives of 1-(substituted phenyl)pyrrole. Tetrahedron 641371-1377 (2008).

    CASE

    Google Scholar

  • Amano, S., Fielden, SDP, and Leigh, DA A catalytically driven artificial molecular pump. Nature 594529-534 (2021).

    ADS
    CASE
    PubMed

    Google Scholar

  • Borsley, S., Leigh, DA, and Roberts, BMW A kinetic dual-trigger information ratchet autonomously driven by carbodiimide hydration. Jam. Chem. Soc. 1434414–4420 (2021).

    CASE
    PubMed

    Google Scholar

  • Ragazzon, G. & Prins, LJ Energy consumption in chemical fuel self-assembly. Nat. Nanotechnology. 13882–889 (2018).

    ADS
    CASE
    PubMed

    Google Scholar

  • Kariyawasam, LS, Hossain, MM & Hartley, CS Transient covalent bonding in non-equilibrium abiotic systems. Angelw. Chem. Int. Ed. 6012648–12658 (2021).

    CASE

    Google Scholar

  • Amano, S., Borsley, S., Leigh, DA, and Sun, Z. Chemical engines: moving systems away from equilibrium through catalytic reaction cycles. Nat. Nanotechnology. 161057-1067 (2021).

    ADS
    CASE
    PubMed

    Google Scholar

  • Tena-Solsona, M. et al. Out-of-equilibrium dissipative supramolecular materials with adjustable lifetime. Nat. Common. 815895 (2017).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Kariyawasam, LS & Hartley, CS Dissipative assembly of aqueous carboxylic acid anhydrides powered by carbodiimides. Jam. Chem. Soc. 13911949–11955 (2017).

    CASE
    PubMed

    Google Scholar

  • Bal, S., Das, K., Ahmed, S. & Das, D. Chemically powered dissipative self-assembly that exploits cooperative catalysis. Angelw. Chem. Int. Ed. 58244–247 (2019).

    CASE

    Google Scholar

  • Astumian, RD Irrelevance of motor stroke for directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J 108291-303 (2015).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Erbas-Cakmak, S., Leigh, DA, McTernan, CT & Nussbaumer, AL Artificial Molecular Machines. Chem. Tower. 11510081-10206 (2015).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Astumian, RD, Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChimPhysChem 171719-1741 (2016).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Dálaigh, C. Ó. & Connon, SJ Non-enzymatic acylative kinetic resolution of Baylis-Hillman adducts. J.Org. Chem. 727066–7069 (2007).

    PubMed

    Google Scholar

  • Li, Q et al. Macroscopic contraction of a gel induced by the integrated movement of molecular motors driven by light. Nat. Nanotechnology. ten161-165 (2015).

    ADS
    PubMed

    Google Scholar

  • García-López, V. et al. Molecular machines open cell membranes. Nature 548567-572 (2017).

    ADS
    PubMed

    Google Scholar

  • Feng, L. et al. Active mechanosorption driven by pumping cassettes. Science 3741215-1221 (2021).

    ADS
    CASE
    PubMed

    Google Scholar

  • Thomas, D., et al. Pumping between phases with a pulsed fuel molecular ratchet. Preprint at https://doi.org/10.33774/chemrxiv-2021-fl7tv (2021).

  • Zhang, Q et al. Artificial muscle-like molecular actuators for nanoparticles. Chemistry 42670–2684 (2018).

    CASE

    Google Scholar

  • Astumian, RD & Bier, M. Mechanochemical coupling of molecular motor movement to ATP hydrolysis. Biophys. J 70637–653 (1996).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Astumien, RD Thermodynamics and kinetics of a Brownian motor. Science 276917–922 (1997).

    CASE
    PubMed

    Google Scholar

  • Serreli, V., Lee, C.-F., Kay, ER, and Leigh, DA A ratchet of molecular information. Nature 445523-527 (2007).

    ADS
    CASE
    PubMed

    Google Scholar

  • Alvarez-Pérez, M., Goldup, SM, Leigh, DA, and Slawin, AMZ A chemically-driven molecular information ratchet. Jam. Chem. Soc. 1301836–1838 (2008).

    PubMed

    Google Scholar

  • Astumian, RD Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Common. ten3837 (2019).

    ADS
    PubMed
    PubMed Center

    Google Scholar

  • Jayalath, IM, Wang, H., Mantel, G., Kariyawasam, LS & Hartley, CS Chemically fueled transient geometry changes in diphenic acids. Org. Lett. 227567–7571 (2020).

    CASE
    PubMed

    Google Scholar

  • Jayalath, IM, Gerken, MM, Mantel, G. & Hartley, CS Effects of substituents on carbodiimide-induced transient geometry changes in diphenic acids. J.Org. Chem. 8612024–12033 (2021).

    CASE
    PubMed

    Google Scholar

  • Amano, S. et al. Insights from a thermodynamic information analysis of a synthetic molecular motor. Nat. Chemistry. (2022) https://doi.org/10.1038/s41557-022-00899-z.

  • Ma, B. & Nussinov, R. Enzyme dynamics indicate stepwise conformational selection in catalysis. Running. Opinion. Chem. Biol. 14652–659 (2010).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Kamerlin, SC & Warshel, A. At the dawn of the 21st century: is dynamics the missing link in understanding enzymatic catalysis? Proteins 781339-1375 (2010).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Krajnik, B. et al. Defocused imaging of surface-bound molecular motors driven by UV. Jam. Chem. Soc. 1397156–7159 (2017).

    CASE
    PubMed

    Google Scholar

  • Roke, D., Wezenberg, SJ & Feringa, BL Molecular rotary motors: unidirectional movement around double bonds. proc. Natl. Acad. Science. United States 1159423–9431 (2018).

    CASE
    PubMed
    PubMed Center

    Google Scholar